C₁₇H₁₅N₃O AND C₂₅H₂₅N₃O

C2-C11	1.528 (4)	C17—C29	1.504 (4)
C4C5	1.461 (4)	C19-C20	1.503 (4)
C5C10	1.384 (4)	C20-C25	1.377 (5)
C5C6	1.397 (4)	C20-C21	1.384 (4)
C6C7	1.371 (5)	C21-C22	1.374 (5)
C7—C8	1.375 (5)	C22—C23	1.360 (6)
C8-C9	1.366 (5)	C23-C24	1.362 (6)
C9-C10	1.398 (4)	C24—C25	1.370 (6)
C2N1C10	118.0 (2)	C27—C11—C2	109.5 (2)
C2-N3-C4	121.1 (2)	C18-C13-C14	119.6 (3)
C2-N3-C19	122.0 (2)	C18-C13-N12	122.4 (2)
C4-N3-C19	116.7 (2)	C14-C13-N12	117.9 (3)
C13-N12-C11	122.5 (2)	C15-C14-C13	117.6 (3)
N1-C2-N3	124.4 (3)	C15C14C28	121.1 (3)
N1-C2-C11	117.1 (2)	C13-C14-C28	121.4 (3)
N3-C2-C11	118.5 (2)	C16-C15-C14	122.7 (3)
O26-C4-N3	120.3 (3)	C15—C16—C17	120.4 (3)
O26-C4-C5	125.0 (3)	C16-C17-C18	118.2 (3)
N3-C4-C5	114.7 (3)	C16-C17-C29	121.0 (3)
C10-C5-C6	120.4 (3)	C18-C17-C29	120.8 (3)
C10-C5-C4	119.3 (3)	C17—C18—C13	121.4 (3)
C6-C5-C4	120.2 (3)	N3-C19-C20	115.5 (2)
C7—C6—C5	119.6 (3)	C25-C20-C21	118.4 (3)
C6—C7—C8	120.4 (3)	C25C20C19	120.2 (3)
C9-C8-C7	120.5 (3)	C21-C20-C19	121.3 (3)
C8C9C10	120.5 (3)	C22-C21-C20	120.5 (3)
C5-C10-N1	122.2 (3)	C23-C22-C21	120.6 (4)
C5-C10-C9	118.6 (3)	C22—C23—C24	119.2 (4)
N1-C10-C9	119.2 (3)	C23-C24-C25	121.2 (4)
N12-C11-C27	108.3 (2)	C24-C25-C20	120.1 (4)
N12-C11-C2	111.2 (2)		

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1992). Program(s) used to solve structures: SAPI91 (Fan, 1991) for (I); TEXSAN, SIR88 (Burla et al., 1989) for (II). For both compounds, program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); software used to prepare material for publication: TEXSAN FINISH.

This work was financed from the grant OTKA No. 1009. Thanks are also due to Chinoin Pharmaceuticals for supporting the project with manpower and instrumentation.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1084). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 398–303.
- Fan, H. F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
- Molecular Structure Corporation (1992). TEXSAN. Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Örfi, L., Kökösi, J., Hermecz, I., Kapui, Z., Szabó, M. & Szász, Gy. (1993). Hung. Patent 208 975.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 726-729

1,2-Bis-crown-5-calix[4]arene

Gérard Pèpe and Jean-Pierre Astier

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, France

JACQUES ESTIENNE

Université de Provence, Centre de Saint-Jérôme, Laboratoire de Spectrométries et de Dynamique Moléculaire, Case 542, F-13397 Marseille, France

CHRISTOPHE BRESSOT, ZOUHAIR ASFARI AND JACOUES VICENS

EHICS, CNRS-URA 405, 1 rue Blaise Pascal, F-67008 Strasbourg, France

(Received 1 December 1993; accepted 1 September 1994)

Abstract

The title compound, 13,16,19,22,25,39,42,45,48,51decaoxahexacyclo[$35.15.1.1^{11,27}.0^{5,52}.0^{7,12}.0^{26,31}.0^{33,38}$]tetrapentaconta-1(52), 2, 4, 7(12), 8, 10, 26(31), 27, 29, -33(38),34,36-dodecaene, $C_{44}H_{52}O_{10}$, is a potent and selective alkali metal carrier. Two half-independent molecules are observed in the solid state and they have the 'pinched-cone' conformation of the studied calixarenes.

Comment

Calix[4]arenes (1) are cyclic oligomers made up from four phenol units which can be functionalized at either the 'upper rim', R (aromatic nuclei), or the 'lower rim', R' (phenolic OH groups).

The corresponding calixarene podands, calix crowns and calix spherands, are neutral ligands which are interesting as host molecules and because of their ability to act as selective alkali metal receptors and carriers (Vicens & Bhömer, 1991).

The macrocycle (2) was the first reported 'crowned' calixarene which exhibits a 1,3-functionalization with a polyetheral chain linking two opposite O atoms of *p*-*tert*-butylcalix[4]arene (Alfieri, Dradi, Pochini, Ungaro & Andreetti, 1983).

The subsequent selective 1,2-functionalization of *p*tert-butylcalix[4]arene by a Ti^{IV}-assisted reaction allowed the stepwise synthesis of a new type of calixarene-based bis-crown ether [(3) R = tert-butyl], a potentially highly preorganized molecular receptor (Arduini, Casnati, Dodi, Pochini & Ungaro, 1990).

An analogous product [(3) R = H], the title compound, was obtained by direct reaction of calix[4]arene with tetraethylene glycol ditosylate in the presence of caesium carbonate in acetonitrile in reflux at 9% yield (Asfari, Astier, Bressot, Estienne, Pèpe & Vicens, 1994). Its X-ray structure analysis was undertaken to determine the molecular conformation of the free ligand and to predict, using molecular-mechanics calculations (*GEN-MOL*; Pèpe & Siri, 1990), the conformations adopted by the corresponding alkali metal complexes.

The small number of observed reflections [1851 with $I > 3\sigma(I)$], compared to the large number of parameters to be refined in order to understand the behaviour of the molecule from analysis of anisotropic displacement parameters, led us to refine atomic coordinates (163) and anisotropic displacement parameters (325) separately. The final *R* value is 0.11, which is of the same order as values found for the determination of similar structures [0.15 reported by Atwood, Coleman, Zhang & Bott (1989), 0.14 by Iwamoto, Araki & Shinkai (1991) and 0.16 by Grootenhuis, Kollman, Grönen, Reinhoudt, van Hummel, Ugozzoli & Andreetti (1990)].

The asymmetric unit contains two half molecules related by pseudo-mirror symmetry (at the molecular level, see below) as displayed in Fig. 1. The complete molecules are generated by the binary axis of the P2/c space group. Fig. 2 shows the complete molecules in a projection along the *b* axis. The polyetheral chains form an open 'mouth' ready to 'swallow' the cations.

Fig. 1. ORTEPII (Johnson, 1976) drawing of the two half-molecules A and A' in the asymmetric unit cell, with displacement ellipsoids at 50% probability.

Fig. 2. Projection along the *b* axis of the two complete independent molecules.

Atoms C20–C26 have high displacement parameters (mean $B_{eq} \simeq 17.8 \text{ Å}^2$) compared with atoms O15–C19. The two molecules have the 'pinched-cone' conformation. A best molecular fit performed on the complete molecule A and the complete mirrored molecule A' is 0.04 Å, which indicates a good geometrical agreement between the two observed molecules.

The angles between the phenyl rings (C1–C6 and C9– C14) and the plane through the methylene atoms C7, C8, C7ⁱ and C8ⁱ [symmetry code (i) is -x, y, $\frac{1}{2}-z$ for A and -1-x, y, $\frac{1}{2}-z$ for A'] are 140 (2) and 76 (2)° for molecule A, and 140 (2) and 80 (2)° for molecule A', which are very similar. The 'mouth' aperture can be measured by the distances between the O atoms (Table 3) and by the angle between the plane passing through the O atoms O15, O18, O21, O24 and O27, and the plane through their symmetry equivalents [133 (2) and 110 (2)° for A and A', respectively]. The parameters indicate that the slight geometrical differences between the two molecules result from the 'mouth' aperture, which is greater in A than in A'.

The packing analysis indicates alternate columns of molecules parallel to the b axis. The molecular contacts

in the columns and between the columns (between the polyetheral chains and the phenyl rings) are of van de Waals type. A pseudo-glide plane perpendicular to the axis, with a translation parallel to the b axis, and almost equal to b/2, existing between the two independent hal molecules, explains the observed lateral contacts.

Cu $K\alpha$ radiation

Cell parameters from 25

 $\lambda = 1.5416 \text{ Å}$

reflections $\theta = 15.00 - 45.0^{\circ}$

 $\mu = 0.67 \text{ mm}^{-1}$ T = 295 K

 $0.4 \times 0.3 \times 0.3$ mm

3 standard reflections frequency: 60 min intensity decay: none

Square prism

Colourless

 $R_{\rm int} = 0.05$ $\theta_{\rm max} = 45^{\circ}$ $h = -15 \rightarrow 15$ $k = 0 \rightarrow 9$ $l = 0 \rightarrow 20$

Experimental

Crystal data C44H52O10 $M_r = 740.89$ Monoclinic P2/ca = 18.060 (2) Å b = 10.716 (1) Å c = 22.338 (2) Å $\beta = 112.89 (2)^{\circ}$ V = 3982.7 (9) Å³ Z = 4 $D_x = 1.24 \text{ Mg m}^{-3}$ $D_m = 1.22$ (2) Mg m⁻³ D_m measured by flotation

Data collection

Enraf–Nonius CAD-4 diffractometer
θ scans
Absorption correction:
none
7736 measured reflections
2901 independent reflections
1851 observed reflections
$[I > 3.0\sigma(I)]$

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.25 \ { m e} \ { m \AA}^{-3}$
R = 0.11	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.11	Extinction correction: none
S = 1.64	Atomic scattering factors
1851 reflections	from International Tables
325 parameters	for X-ray Crystallography
H atoms not located	(1974, Vol. IV, Table
Unit weights applied	2.2B)
$(\Delta/\sigma)_{\rm max} = 0.35$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

_ _

$B_{eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	у	z	Beg
Molecule A				
Cl	-0.1148 (8)	0.0629 (13)	0.3483 (7)	6.9 (10)
C2	-0.0387 (8)	0.0169 (14)	0.3599 (6)	6.5 (10)
C3	0.0309 (8)	0.0527 (12)	0.4147 (6)	6.2 (11)
C4	0.0178 (10)	0.1317 (13)	0.4609 (6)	7.4 (12)
C5	-0.0602 (10)	0.1729 (14)	0.4508 (7)	8.1 (12)
C6	-0.1269 (9)	0.1428 (15)	0.3932 (7)	7.7 (12)
C7	-0.1889 (8)	0.0407 (16)	0.2800 (6)	7.9 (13)
C8	0.1134 (7)	0.0187 (13)	0.4174 (6)	6.0 (10)
C9	0.1299 (6)	0.1008 (13)	0.3670 (6)	5.4 (12)
C10	0.1573 (7)	0.0429 (12)	0.3216 (6)	5.7 (11)

е	C11	0.1652 (7)	0.1126 (15)	0.2706 (7)	6.8 (12)
-	C12	0.1478 (7)	0.2409 (14)	0.2655 (7)	6.7 (11)
r	C13	0.1224 (8)	0.2999 (14)	0.3110 (7)	7.3 (11)
a	C14	0.1117 (7)	0.2279 (14)	0.3601 (6)	6.5 (11)
et	O15	0.1739 (5)	-0.0845 (9)	0.3289 (4)	7.1 (7)
	C16	0.2582 (8)	-0.1109 (16)	0.3758 (8)	9.0 (16)
I	C17	0.2629 (9)	-0.2511 (15)	0.3852 (7)	8.6 (12)
	O18	0.2178 (5)	-0.2768 (10)	0.4259 (5)	8.6 (8)
	C19	0.2220 (11)	-0.4041 (16)	0.4435 (9)	10.5 (17)
	C20	0.1678 (13)	-0.4272 (18)	0.4787 (8)	11.7 (18)
	O21	0.0893 (11)	-0.4305 (20)	0.4259 (13)	24.0 (24)
	C22	0.0374 (17)	-0.4884 (29)	0.4278 (12)	20.4 (31)
	C23	-0.0433 (19)	-0.4710 (19)	0.3855 (17)	20.6 (38)
	O24	-0.0719 (8)	-0.3745 (17)	0.3401 (8)	17.6 (17)
	C25	-0.0575 (16)	-0.2710 (34)	0.3094 (14)	26.3 (37)
	C26	-0.0012 (15)	-0.2072 (20)	0.3415 (10)	15.8 (24)
	O27	-0.0308(5)	-0.0645 (9)	0.3140 (4)	6.8 (7)
	Molecul	e A'			
	C1′	-0.2973 (7)	-0.3815 (14)	0.3588 (7)	6.8 (13)
	C2′	-0.3631 (8)	-0.4285 (13)	0.3691 (6)	6.5 (12)
	C3'	-0.3925 (8)	-0.3937 (13)	0.4164 (6)	6.6 (12)
	C4′	-0.3370 (10)	-0.3099 (17)	0.4660 (7)	9.2 (15)
	C5'	-0.2670 (11)	-0.2707 (16)	0.4608 (8)	10.7 (17)
	C6′	-0.2444 (8)	-0.2969 (15)	0.4077 (7)	8.7 (15)
	C7′	-0.2821 (7)	-0.4137 (16)	0.2976 (6)	7.7 (14)
	C8′	-0.4724 (8)	-0.4237 (14)	0.4188 (6)	7.3 (11)
	C9′	-0.5343 (8)	-0.3462 (13)	0.3620 (6)	5.8 (10)
	C10′	-0.5985 (8)	-0.4053 (12)	0.3130 (6)	5.5 (10)
	C11'	-0.6530(7)	-0.3428 (14)	0.2580 (6)	6.2 (11)
	C12′	-0.6428 (9)	-0.2111 (14)	0.2536 (7)	7.2 (12)
	C13′	-0.5795 (10)	-0.1487 (13)	0.3060 (7)	7.5 (12)
	C14′	-0.5240 (8)	-0.2163 (13)	0.3591 (7)	6.6 (11)
	015'	-0.6073 (5)	-0.5355 (9)	0.3168 (4)	6.8 (6)
	C16′	-0.6585 (8)	-0.5701 (14)	0.3524 (7)	7.6 (10)
	C17′	-0.6488 (9)	-0.7101 (15)	0.3634 (7)	7.9 (12)
	O18′	-0.5675 (6)	-0.7270 (9)	0.4112 (5)	7.7 (7)
	C19′	-0.5527 (12)	-0.8561 (17)	0.4270 (9)	11.7 (18)
	C20′	-0.4614 (14)	-0.8629 (22)	0.4669 (9)	14.6 (22)
	021′	-0.4438 (10)	-0.8934 (15)	0.4086 (9)	18.1 (18)
	C22′	-0.3603 (14)	-0.9247 (24)	0.4350 (10)	15.6 (25)
	C23′	-0.3478 (18)	-0.9339 (21)	0.3721 (15)	19.3 (30)
	024′	-0.3391 (9)	-0.8114 (20)	0.3458 (7)	18.5 (19)
	C25′	-0.3935 (13)	-0.7425 (27)	0.3093 (9)	17.6 (27)
	C26′	-0.4222 (11)	-0.6432 (15)	0.3422 (7)	10.1 (15)
	O27′	-0.4131 (5)	-0.5120 (9)	0.3208 (3)	6.4 (7)

Table 2. Selected geometric parameters (Å, °)

C1-C2 C1-C6 C1-C7 C2-C3 C2-027 -C4 -C8 C3-C4-C5

C5--C6 C8-C9 C9-C14

C10-C11 C10-015

C11—C12 C12—C13

C13-C14 O15-C16 C16-C17 C17-018 018-C19 C19--C20 C20-021 C22-O21 C22-C23 O24-C25 C25-C26 C26-027

0	-	
1.386 (21)	C1'—C2'	1.390 (22)
1.399 (24)	C1'—C6'	1.455 (19)
1.608 (16)	C1'—C7'	1.535 (22)
1.424 (18)	C2'—C3'	1.405 (22)
1.395 (14)	C2'—O27'	1.422 (14)
1.424 (21)	C3'—C4'	1.475 (19)
1.512 (20)	C3'—C8'	1.500 (22)
1.408 (25)	C4'-C5'	1,379 (29)
1.416 (18)	C5'—C6'	1.424 (27)
1.546 (21)	C8'—C9'	1.564 (17)
1.396 (20)	C9'-C14'	1.409 (20)
1.415 (22)	C10'—C11'	1.409 (16)
1.394 (16)	C10'-015'	1.411 (16)
1.405 (22)	C11'-C12'	1.432 (21)
1.416 (24)	C12'—C13'	1.443 (19)
1.414 (22)	C13'—C14'	1.418 (18)
1.502 (15)	C16'—O15'	1.482 (20)
1.515 (23)	C16'—C17'	1.519 (22)
1.464 (22)	C17'—O18'	1.452 (16)
1.414 (20)	C19'—O18'	1.427 (21)
1.495 (34)	C19'—C20'	1.541 (29)
1.450 (25)	C20'—O21'	1.492 (33)
1.139 (40)	C22'—O21'	1.429 (29)
1.407 (38)	C22'—C23'	1.510 (45)
1.399 (32)	C23'—O24'	1.471 (34)
1.381 (41)	O24'—C25'	1.246 (28)
1.203 (36)	C25'—C26'	1.496 (33)
1.657 (23)	C26'—O27'	1.514 (19)

C2-C1-C7	121.6(11)	C2'-C1'-C7'	121.8 (11)
C6-C1-C7	117.8 (11)	C6'C1'C7'	121.1 (11)
C1-C2-C3	123.0 (11)	C1'-C2'-C3'	128.8 (11)
C1-C2-027	117.5 (11)	C1'-C2'-O27'	115.7 (10)
C3—C2—O27	119.5 (10)	C3'—C2'—O27'	115.0 (10)
C2-C3-C4	116.3 (11)	C2'-C3'-C4'	112.4 (11)
C2-C3-C8	119.7 (10)	C2'-C3'-C8'	128.3 (11)
C4—C3—C8	123.6 (10)	C4'-C3'-C8'	119.1 (11)
C3-C4-C5	120.5 (12)	C3'—C4'—C5'	120.0 (13)
C4-C5-C6	121.2 (12)	C4'-C5'-C6'	125.4 (14)
C1C6C5	118.4 (12)	C1'C6'C5'	115.5 (12)
C3-C8-C9	107.4 (9)	C3'C8'C9'	104.6 (10)
C10C9C8	119.1 (9)	C10'-C9'-C8'	120.5 (10)
C10C9C14	118.4 (10)	C10'C9'C14'	119.7 (11)
C14-C9-C8	122.1 (10)	C14'-C9'-C8'	119.8 (10)
C11C10C9	120.8 (10)	C11'-C10'-C9'	123.5 (11)
C11-C10-015	121.8 (10)	C11'-C10'-O15'	117.8 (10)
C9-C10-O15	117.4 (9)	C9'—C10'—O15'	118.6 (10)
C10-C11-C12	119.5 (11)	C10'-C11'-C12'	117.6 (11)
C11-C12-C13	120.2 (11)	C11'-C12'-C13'	118.9 (12)
C12C13C14	119.5 (11)	C12'-C13'-C14'	121.4 (12)
C13-C14-C9	121.4 (11)	C13'—C14'—C9'	118.7 (11)
C10-015-C16	112.3 (9)	C10'-015'-C16'	112.8 (9)
C17C16O15	105.7 (10)	C17'C16'O15'	106.1 (10)
C16C17O18	105.0 (10)	C16'-C17'-O18'	105.2 (10)
C17-018-C19	111.8 (10)	C17'—O18'—C19'	110.0 (10)
C20-C19-018	109.3 (13)	C20'-C19'-O18'	104.1 (13)
C19C20O21	102.1 (14)	C19'-C20'-O21'	92.8 (14)
C20-021-C22	122.8 (21)	C20'-O21'-C22'	103.9 (15)
C23-C22-O21	123.7 (25)	C23'-C22'-O21'	98.5 (17)
C22-C23-O24	125.4 (22)	C22'—C23'—O24'	113.0 (19)
C26C25O24	116.0 (24)	C26'—C25'—O24'	115.8 (18)
C25C26O27	103.1 (19)	C25'-C26'-O27'	113.9 (13)
C23-024-C25	150.0 (19)	C23'—O24'—C25'	127.6 (18)
C2-027-C26	114.5 (10)	C2′—O27′—C26′	117.4 (9)

Table 3. Distances (Å) between O atoms of the etheralchains characterizing the aperture of the crownedcalixarene

	Α	A'
015027	3.24 (4)	3.25 (4)
O18· · · O24 ⁱ	5.58 (6)	5.39 (6)
O 21· · · O 21 ⁱ	7.24 (8)	6.57 (8)

Symmetry code: (i) indicates the equivalent atom generated by the twofold axis.

As the crystals of the studied calixarene were of poor quality, half the reciprocal space was measured and averaged values were calculated to increase the measurement accuracy.

Data collection: Structure Determination Package (Enraf-Nonius, 1979). Cell refinement: Structure Determination Package. Data reduction: local program (CRMC2, France). Program(s) used to solve structure: MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEPII (Johnson, 1976) and GENMOL (Pèpe & Siri, 1990).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1099). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Alfieri, C., Dradi, E., Pochini, A., Ungaro, R. & Andreetti, G. D. (1983). J. Chem. Soc. Chem. Commun. pp. 1075–1077.

Arduini, A., Casnati, A., Dodi, L., Pochini, A. & Ungaro, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1597-1598.

Asfari, Z., Astier, J. P., Bressot, C., Estienne, J., Pèpe, G. & Vicens,
J. (1994). J. Incl. Phenom. Special Commemorative Volume on
Calixarenes, edited by J. Vicens. Dordrecht: Kluwer.
Atwood, J. L., Coleman, A. W., Zhang, H. & Bott, S. G. J. (1989).
J. Incl. Phenom. 7, 203–211.
Enraf-Nonius (1979). Structure Determination Package. Enraf-
Nonius, Delft, The Netherlands.
Grootenhuis, P. D. J., Kollman, P. A., Grönen, L. C., Reinhoudt, D.
N., van Hummel, G. J., Ugozzoli, F. & Andreetti, G. D. (1990). J.
Am. Chem. Soc. 112, 4165–4176.
Iwamoto, J., Araki, J. & Shinkai, S. (1991). J. Org. Chem. 56, 4955-
4962.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge
National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G.,
Declercq, JP. & Woolfson, M. M. (1980). MULTAN80. A System

Pèpe, G. & Siri, D. (1990). Studies in Physical and Theoretical Chemistry, Vol. 71, edited by J. L. Rivail, pp. 93-101. Amsterdam: Elsevier.

of Computer Programs for the Automatic Solution of Crystal

Structures from X-ray Diffraction Data. Univs. of York, England,

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Vicens, J. & Bhömer, V. (1991). Calixarenes. A Versatile Class of Macrocyclic Compounds. Dordrecht: Kluwer.

Acta Cryst. (1995). C51, 729-732

and Louvain, Belgium.

3-Oxo-2-phenyl-3a,4,5,7a-tetrahydro-5,7aepoxyisoindoline-4-carboxylic Acid in Two Crystalline Phases, Solvated with DMSO and Unsolvated

Gérard Pèpe

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille CEDEX 9, France

JEAN-PIERRE REBOUL

GERCTOP, URA CNRS 1411, Faculté de Pharmacie, 27 Bd Jean-Moulin, 13385 Marseille CEDEX 5, France

PIERRE BRUN AND JEAN ZYLBER

Laboratoire de Chimie Organique Sélective, GCOBO, Université II Faculté des Sciences de Luminy, F13288 Marseille CEDEX 9, France

(Received 16 May 1994; accepted 10 October 1994)

Abstract

The title compound is a precursor of optically active γ -lactams. Two crystalline forms, solvated with DMSO (C₁₅H₁₃NO₄.C₂H₆OS) and unsolvated (C₁₅H₁₃NO₄), were found and analyzed.